论文标题

通过基于UNET的对抗结构域均质器改善有丝分裂检测

Improving Mitosis Detection Via UNet-based Adversarial Domain Homogenizer

论文作者

Chandr, Tirupati Saketh, Nasser, Sahar Almahfouz, Kurian, Nikhil Cherian, Sethi, Amit

论文摘要

有效的有丝分裂定位是决定肿瘤预后和成绩的关键先驱任务。由于固有的域偏见,通过深度学习的图像分析通过深度学习的图像分析而自动化有丝分裂检测通常会失败。本文提出了一个用于有丝分裂检测的域均质器,该域均质器试图通过输入图像的对抗重建来减轻组织学图像的领域差异。提出的均质器基于U-NET架构,可以有效地减少组织学成像数据常见的域差异。我们通过观察预处理图像之间的域差异来证明我们的域均质器的有效性。使用此均质器以及随后的视网膜网络对象检测器,我们能够以检测到的有丝分裂数字的平均精度来超越2021 MIDOG挑战的基准。

The effective localization of mitosis is a critical precursory task for deciding tumor prognosis and grade. Automated mitosis detection through deep learning-oriented image analysis often fails on unseen patient data due to inherent domain biases. This paper proposes a domain homogenizer for mitosis detection that attempts to alleviate domain differences in histology images via adversarial reconstruction of input images. The proposed homogenizer is based on a U-Net architecture and can effectively reduce domain differences commonly seen with histology imaging data. We demonstrate our domain homogenizer's effectiveness by observing the reduction in domain differences between the preprocessed images. Using this homogenizer, along with a subsequent retina-net object detector, we were able to outperform the baselines of the 2021 MIDOG challenge in terms of average precision of the detected mitotic figures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源