论文标题

使用时间逻辑描述的可解释时间序列分类的神经符号模型

Neuro-symbolic Models for Interpretable Time Series Classification using Temporal Logic Description

论文作者

Yan, Ruixuan, Ma, Tengfei, Fokoue, Achille, Chang, Maria, Julius, Agung

论文摘要

大多数现有的时间序列分类(TSC)模型缺乏可解释性,难以检查。可解释的机器学习模型可以帮助发现数据中的模式,并为域专家提供易于理解的见解。在这项研究中,我们提出了一种神经符号时间序列分类(NSTSC),这是一种神经符号模型,利用信号时间逻辑(STL)和神经网络(NN)使用多视图数据表示,并将该模型表示为可读的人类可读,可解释的公式。在NSTSC中,每个神经元与符号表达(即STL(sub)公式)相关。因此,NSTSC的输出可以解释为类似于自然语言的STL公式,描述了数据中隐藏的时间和逻辑关系。我们提出了一个基于NSTSC的分类器,该分类器采用决策树方法来学习公式结构并完成多类TSC任务。提出的WSTL的平滑激活功能允许以端到端的方式学习模型。我们在来自UCR时间序列存储库的小鼠和基准数据集的现实世界伤口愈合数据集上测试NSTSC,这表明NSTSC与最先进的模型可以实现可比的性能。此外,NSTSC可以生成与域知识相匹配的可解释公式。

Most existing Time series classification (TSC) models lack interpretability and are difficult to inspect. Interpretable machine learning models can aid in discovering patterns in data as well as give easy-to-understand insights to domain specialists. In this study, we present Neuro-Symbolic Time Series Classification (NSTSC), a neuro-symbolic model that leverages signal temporal logic (STL) and neural network (NN) to accomplish TSC tasks using multi-view data representation and expresses the model as a human-readable, interpretable formula. In NSTSC, each neuron is linked to a symbolic expression, i.e., an STL (sub)formula. The output of NSTSC is thus interpretable as an STL formula akin to natural language, describing temporal and logical relations hidden in the data. We propose an NSTSC-based classifier that adopts a decision-tree approach to learn formula structures and accomplish a multiclass TSC task. The proposed smooth activation functions for wSTL allow the model to be learned in an end-to-end fashion. We test NSTSC on a real-world wound healing dataset from mice and benchmark datasets from the UCR time-series repository, demonstrating that NSTSC achieves comparable performance with the state-of-the-art models. Furthermore, NSTSC can generate interpretable formulas that match with domain knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源