论文标题

深hy:在深层系统发育上

DeePhy: On Deepfake Phylogeny

论文作者

Narayan, Kartik, Agarwal, Harsh, Thakral, Kartik, Mittal, Surbhi, Vatsa, Mayank, Singh, Richa

论文摘要

DeepFake是指量身定制和合成生成的视频,这些视频现在普遍存在并大规模传播,威胁到在线可用信息的可信度。尽管现有的数据集包含不同类型的深击,但它们的产生技术各不相同,但它们并不考虑以“系统发育”方式进行深击的发展。现有的深层面孔可能与另一个脸交换。面部交换过程可以多次执行,并且可以演变为混​​淆深层检测算法。此外,许多数据库不提供有关目标标签的使用的生成模型。模型归因通过提供有关所使用的生成模型的信息,有助于增强检测结果的解释性。为了使研究界能够解决这些问题,本文提出了Deephy,这是一种新型的DeepFake系统发育数据集,由使用三种不同的一代技术生成的5040个DeepFake视频组成。有840个曾经交换深击的视频,2520次交换深击的视频和1680个换装深击的视频。使用超过30 GB的大小,使用1,352 GB累积内存的18 GPU在1100多个小时内准备了数据库。我们还使用六种DeepFake检测算法在Deephy数据集上展示了基准。结果突出了需要发展深击模型归因的研究,并将过程推广到各种深层生成技术上。该数据库可在以下网址找到:http://iab-rubric.org/deephy-database

Deepfake refers to tailored and synthetically generated videos which are now prevalent and spreading on a large scale, threatening the trustworthiness of the information available online. While existing datasets contain different kinds of deepfakes which vary in their generation technique, they do not consider progression of deepfakes in a "phylogenetic" manner. It is possible that an existing deepfake face is swapped with another face. This process of face swapping can be performed multiple times and the resultant deepfake can be evolved to confuse the deepfake detection algorithms. Further, many databases do not provide the employed generative model as target labels. Model attribution helps in enhancing the explainability of the detection results by providing information on the generative model employed. In order to enable the research community to address these questions, this paper proposes DeePhy, a novel Deepfake Phylogeny dataset which consists of 5040 deepfake videos generated using three different generation techniques. There are 840 videos of one-time swapped deepfakes, 2520 videos of two-times swapped deepfakes and 1680 videos of three-times swapped deepfakes. With over 30 GBs in size, the database is prepared in over 1100 hours using 18 GPUs of 1,352 GB cumulative memory. We also present the benchmark on DeePhy dataset using six deepfake detection algorithms. The results highlight the need to evolve the research of model attribution of deepfakes and generalize the process over a variety of deepfake generation techniques. The database is available at: http://iab-rubric.org/deephy-database

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源