论文标题

过渡金属二分法源的轨道磁电效应

Orbital magnetoelectric effect in nanoribbons of transition metal dichalcogenides

论文作者

Cysne, Tarik P., Guimarães, Filipe S. M., Canonico, Luis M., Costa, Marcio, Rappoport, Tatiana G., Muniz, R. B.

论文摘要

轨道磁电效应(OME)通常是指由施加的电场引起的轨道磁化的出现。在这里,我们表明,具有Zigzag(ZZ)边缘的过渡金属二甲化合物(TMD)的纳米骨可能会显示出沿着丝带轴施加的电场激活的大量OME。我们检查了从单层(1L)和三层(2L)的MOS $ _2 $在三角形(H)结构阶段中提取的纳米容器。在纵向施加的电场中计算为诱导的轨道角动量积累的横向轮廓。我们的结果表明,靠近纳米甲的边缘交叉能量,轨道角动量积累主要发生在丝带的边缘周围。他们有两个贡献:一种是由轨道厅效应(OHE)产生的,另一个是由OME组成的。前者相对于纳米替比的主要轴是横向反对的,而后者是对称的,因此负责系统在系统中诱导的轨道磁化。我们发现,源自1L纳米苯的OHE的轨道积累大约是2L纳米替比的一半。此外,尽管OME可以在1L-TMD纳米容器中达到相当高的值,但它在保留空间反演对称性的2L纳米纤维中消失了。还讨论了证明我们发现合理的微观特征。

The orbital magnetoelectric effect (OME) generically refers to the appearance of an orbital magnetization induced by an applied electric field. Here, we show that nanoribbons of transition metal dichalcogenides (TMDs) with zigzag (ZZ) edges may exhibit a sizeable OME activated by an electric field applied along the ribbons' axis. We examine nanoribbons extracted from a monolayer (1L) and a bilayer (2L) of MoS$_2$ in the trigonal (H) structural phase. Transverse profiles of the induced orbital angular momentum accumulations are calculated to first order in the longitudinally applied electric field. Our results show that close to the nanoribbon's edge-state crossings energy, the orbital angular momentum accumulations take place mainly around the ribbons' edges. They have two contributions: one arising from the orbital Hall effect (OHE) and the other consists in the OME. The former is transversely anti-symmetric with respect to the principal axis of the nanoribbon, whereas the latter is symmetric, and hence responsible for the resultant orbital magnetization induced in the system. We found that the orbital accumulation originating from the OHE for the 1L-nanoribbon is approximately half that of a 2L-nanoribbon. Furthermore, while the OME can reach fairly high values in 1L-TMD nanoribbons, it vanishes in the 2L ones that preserve spatial inversion symmetry.The microscopic features that justify our findings are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源