论文标题
NIERT:通过使用变压器编码器统一散布数据表示的准确数值插值
NIERT: Accurate Numerical Interpolation through Unifying Scattered Data Representations using Transformer Encoder
论文作者
论文摘要
分散数据的插值是数值分析中的经典问题,具有悠久的理论和实际贡献历史。最近的进步利用了深层神经网络来构建插值器,表现出色且可推广的性能。但是,它们仍然在两个方面处于缺陷:\ textbf {1)不足的表示学习},这是由于流行的编码器 - 淘汰框架中观察到的和目标点的单独嵌入和\ textbf {2)有限的概括pers},这是由于忽略了在不同域中共享的先前插入知识所引起的。为了克服这些局限性,我们使用\ textbf {e} ncoder \ textbf {r textbf {r} epresentation \ textbf {t textbf {t textbf {t} ransformers(textbf {textbf {textbf {nieert})。一方面,Niert利用了仅编码框架而不是编码器框架结构。这样,Niert可以将观察到的观察点嵌入并置于统一的编码器表示空间中,从而有效利用它们之间的相关性并获得更精确的表示。另一方面,我们建议在大规模合成数学函数上预先培训NIERT,以获取先前的插值知识,并将其转移到具有一致的性能增益的多个插值域。在合成数据集和现实世界数据集上,NIERT在TFRD子集上的较大边距均优于现有方法,即4.3 $ \ sim $ 14.3 $ \ times $降低MAE,1.7/1.8/1.8/8.7 $ \ timple Mathit/physionet/Physionet/ptv数据集中的MSE降低MSE。 NIERT的源代码可从https://github.com/dingshizhe/niert获得。
Interpolation for scattered data is a classical problem in numerical analysis, with a long history of theoretical and practical contributions. Recent advances have utilized deep neural networks to construct interpolators, exhibiting excellent and generalizable performance. However, they still fall short in two aspects: \textbf{1) inadequate representation learning}, resulting from separate embeddings of observed and target points in popular encoder-decoder frameworks and \textbf{2) limited generalization power}, caused by overlooking prior interpolation knowledge shared across different domains. To overcome these limitations, we present a \textbf{N}umerical \textbf{I}nterpolation approach using \textbf{E}ncoder \textbf{R}epresentation of \textbf{T}ransformers (called \textbf{NIERT}). On one hand, NIERT utilizes an encoder-only framework rather than the encoder-decoder structure. This way, NIERT can embed observed and target points into a unified encoder representation space, thus effectively exploiting the correlations among them and obtaining more precise representations. On the other hand, we propose to pre-train NIERT on large-scale synthetic mathematical functions to acquire prior interpolation knowledge, and transfer it to multiple interpolation domains with consistent performance gain. On both synthetic and real-world datasets, NIERT outperforms the existing approaches by a large margin, i.e., 4.3$\sim$14.3$\times$ lower MAE on TFRD subsets, and 1.7/1.8/8.7$\times$ lower MSE on Mathit/PhysioNet/PTV datasets. The source code of NIERT is available at https://github.com/DingShizhe/NIERT.