论文标题

在二维中划分拓扑订单:Kitaev的十六倍方式的可解决模型

Lacing topological orders in two dimensions: exactly solvable models for Kitaev's sixteen-fold way

论文作者

Jin, Jin-Tao, Miao, Jian-Jian, Zhou, Yi

论文摘要

已经构建了一个二维(2D)Spin-1/2模型的家族,以实现Kitaev的16倍对任何理论的方式。在所有晶格站点上定义一维(1D)路径,并在1D路径的帮助下执行Jordan-Wigner转换,我们发现这种Spin-1/2模型等于具有$ν$ Majorana fermions的模型,并与静态的$ \ MathBb {z} _2 $ GAUGE couge couply相连。在这里,Majorana fermions的每个规格都产生了一个能量频段,该能量频段带有Chern Number $ \ Mathcal {C} = 1 $,产生了总计Chern Number $ \ Mathcal {C} =ν$。已经表明,当$ν$是一个奇数(偶数)时,地面状态在拓扑上是三(四个)的拓扑归化。这些确切的可解决模型可以通过量子模拟来实现。

A family of two-dimensional (2D) spin-1/2 models have been constructed to realize Kitaev's sixteen-fold way of anyon theories. Defining a one-dimensional (1D) path through all the lattice sites, and performing the Jordan-Wigner transformation with the help of the 1D path, we find that such a spin-1/2 model is equivalent to a model with $ν$ species of Majorana fermions coupled to a static $\mathbb{Z}_2$ gauge field. Here each specie of Majorana fermions gives rise to an energy band that carries a Chern number $\mathcal{C}=1$, yielding a total Chern number $\mathcal{C}=ν$. It has been shown that the ground states are three (four)-fold topologically degenerate on a torus, when $ν$ is an odd (even) number. These exactly solvable models can be achieved by quantum simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源