论文标题
线性弹性中不连续的彼得 - 盖尔金近似值的超授权
Superconvergence of discontinuous Petrov-Galerkin approximations in linear elasticity
论文作者
论文摘要
现有的不连续的彼得 - 盖尔金方法的先验收敛结果可以改善线性弹性问题。使用二元参数,我们表明可以获得较高的位移收敛速率。引入后处理技术是为了证明超级融合和数值实验{\ color {black {black}确认}我们的理论。
Existing a priori convergence results of the discontinuous Petrov-Galerkin method to solve the problem of linear elasticity are improved. Using duality arguments, we show that higher convergence rates for the displacement can be obtained. Post-processing techniques are introduced in order to prove superconvergence and numerical experiments {\color{black} confirm} our theory.