论文标题

Lorentzian空间中OPE系数的本地和协变量关系

Local and Covariant Flow Relations for OPE Coefficients in Lorentzian Spacetimes

论文作者

Klehfoth, Mark G., Wald, Robert M.

论文摘要

对于欧几里得量子田间理论,荷兰和荷兰显示了运营商产品扩展(OPE)系数满足“流程方程”:对于相互作用参数$λ$,任何OPE系数的部分导数相对于$λ$给出了$λ$的一部分,这是由整体的euclidean of euclidean of euclidean of euclidean of euclidean of eucte of ope ope ope eceffefferement的euclidean space。在本文中,我们将这些结果概括为平坦的欧几里得空间,以在可解决的巨大klein-gordon量表域理论的“玩具模型”的背景下弯曲的洛伦兹空间,并以$ m^2 $视为“自我相互作用参数”。即使在Minkowski的时空中,也是由于必须在紧凑的时空区域上采用所有积分以确保收敛而造成的,但任何积分截止都必须破坏Lorentz的协方差。我们展示了如何通过以类似于爱泼斯坦 - 格莱斯(Epstein-Glaser)重新分配方案的方式添加补偿“对抗”来获得协变量关系。我们还展示了如何消除对“红外切口规模” $ l $的依赖,从而产生与几乎均匀尺度的流量关系。在弯曲的时空中,时空集成将导致OPE系数非局部依赖于时空度量,这违反了量子场应在局部和协方差依赖于度量的要求。我们通过与OPE扩展点的合适局部多项式近似替换度量来展示如何克服这一潜在的严重困难。因此,我们在弯曲的洛伦兹(Lorentzian)空间中获得了克莱因·戈登理论(Klein-Gordon)理论的OPE系数的局部和协变量关系。在附录中,我们开发了一种基于OPE系数的关联属性的“玩具模型”以外构建本地和协变量的算法,并将我们的方法应用于$ λϕ^4 $ - 理论。

For Euclidean quantum field theories, Holland and Hollands have shown operator product expansion (OPE) coefficients satisfy "flow equations": For interaction parameter $λ$, the partial derivative of any OPE coefficient with respect to $λ$ is given by an integral over Euclidean space of a sum of products of other OPE coefficients. In this paper, we generalize these results for flat Euclidean space to curved Lorentzian spacetimes in the context of the solvable "toy model" of massive Klein-Gordon scalar field theory, with $m^2$ viewed as the "self-interaction parameter". Even in Minkowski spacetime, a serious difficulty arises from the fact that all integrals must be taken over a compact spacetime region to ensure convergence but any integration cutoff necessarily breaks Lorentz covariance. We show how covariant flow relations can be obtained by adding compensating "counterterms" in a manner similar to that of the Epstein-Glaser renormalization scheme. We also show how to eliminate dependence on the "infrared-cutoff scale" $L$, thereby yielding flow relations compatible with almost homogeneous scaling of the fields. In curved spacetime, the spacetime integration will cause the OPE coefficients to depend non-locally on the spacetime metric, in violation of the requirement that quantum fields should depend locally and covariantly on the metric. We show how this potentially serious difficulty can be overcome by replacing the metric with a suitable local polynomial approximation about the OPE expansion point. We thereby obtain local and covariant flow relations for the OPE coefficients of Klein-Gordon theory in curved Lorentzian spacetimes. In an appendix, we develop an algorithm for constructing local and covariant flow relations beyond our "toy model" based on the associativity properties of OPE coefficients, and we apply our method to $λϕ^4$-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源