论文标题

gerstenhaber代数

Gerstenhaber algebra of an associative conformal algebra

论文作者

Hou, Bo, Shen, Zhongxi, Zhao, Jun

论文摘要

我们在霍奇希尔德(Hochschild)共同的同伴代数$ a $的Hochschild共同体上定义了杯子产品,并显示杯子产品的分级值得交换。 We define a graded Lie bracket with the degree $-1$ on the Hochschild cohomology $\HH^{\ast}(A)$ of an associative conformal algebra $A$, and show that the Lie bracket together with the cup product is a Gerstenhaber algebra on the Hochschild cohomology of an associative conformal algebra.此外,我们考虑了分裂延伸的共构代数$ a \ hat {\ oplus} m $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $,并表明存在$ \ hh^{\ ast}(a \ hat}的代数同源物。 $ \ hh^{\ ast}(a)$。

We define a cup product on the Hochschild cohomology of an associative conformal algebra $A$, and show the cup product is graded commutative. We define a graded Lie bracket with the degree $-1$ on the Hochschild cohomology $\HH^{\ast}(A)$ of an associative conformal algebra $A$, and show that the Lie bracket together with the cup product is a Gerstenhaber algebra on the Hochschild cohomology of an associative conformal algebra. Moreover, we consider the Hochschild cohomology of split extension conformal algebra $A\hat{\oplus}M$ of $A$ with a conformal bimodule $M$, and show that there exist an algebra homomorphism from $\HH^{\ast}(A\hat{\oplus}M)$ to $\HH^{\ast}(A)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源