论文标题
gerstenhaber代数
Gerstenhaber algebra of an associative conformal algebra
论文作者
论文摘要
我们在霍奇希尔德(Hochschild)共同的同伴代数$ a $的Hochschild共同体上定义了杯子产品,并显示杯子产品的分级值得交换。 We define a graded Lie bracket with the degree $-1$ on the Hochschild cohomology $\HH^{\ast}(A)$ of an associative conformal algebra $A$, and show that the Lie bracket together with the cup product is a Gerstenhaber algebra on the Hochschild cohomology of an associative conformal algebra.此外,我们考虑了分裂延伸的共构代数$ a \ hat {\ oplus} m $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $,并表明存在$ \ hh^{\ ast}(a \ hat}的代数同源物。 $ \ hh^{\ ast}(a)$。
We define a cup product on the Hochschild cohomology of an associative conformal algebra $A$, and show the cup product is graded commutative. We define a graded Lie bracket with the degree $-1$ on the Hochschild cohomology $\HH^{\ast}(A)$ of an associative conformal algebra $A$, and show that the Lie bracket together with the cup product is a Gerstenhaber algebra on the Hochschild cohomology of an associative conformal algebra. Moreover, we consider the Hochschild cohomology of split extension conformal algebra $A\hat{\oplus}M$ of $A$ with a conformal bimodule $M$, and show that there exist an algebra homomorphism from $\HH^{\ast}(A\hat{\oplus}M)$ to $\HH^{\ast}(A)$.