论文标题

端到端以任务为导向的对话框的自动回归实体生成

Autoregressive Entity Generation for End-to-End Task-Oriented Dialog

论文作者

Huang, Guanhuan, Quan, Xiaojun, Wang, Qifan

论文摘要

面向任务的对话框(TOD)系统通常需要与外部知识库的互动,以检索必要的实体(例如餐厅)信息以支持响应生成。大多数当前的端到端TOD系统要么明确检索KB信息,要么将其嵌入模型参数中以进行隐式访问。在这两种方法中,系统都可以通过冲突的实体信息产生响应。为了解决这个问题,我们建议先生成实体自动加压,并利用它来指导端到端系统中的响应生成。为了确保实体的一致性,我们对实体产生强加了三位一体的约束。我们还引入了logit串联策略,以促进梯度反向传播进行端到端培训。 Multiwoz 2.1单一和CAMREST的实验表明,我们的系统可以产生更多的高质量和实体一致的响应。

Task-oriented dialog (TOD) systems often require interaction with an external knowledge base to retrieve necessary entity (e.g., restaurant) information to support the response generation. Most current end-to-end TOD systems either retrieve the KB information explicitly or embed it into model parameters for implicit access.~While the former approach demands scanning the KB at each turn of response generation, which is inefficient when the KB scales up, the latter approach shows higher flexibility and efficiency. In either approach, the systems may generate a response with conflicting entity information. To address this issue, we propose to generate the entity autoregressively first and leverage it to guide the response generation in an end-to-end system. To ensure entity consistency, we impose a trie constraint on entity generation. We also introduce a logit concatenation strategy to facilitate gradient backpropagation for end-to-end training. Experiments on MultiWOZ 2.1 single and CAMREST show that our system can generate more high-quality and entity-consistent responses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源