论文标题

带有钻石量子传感器的纳米级协方差磁力测定法

Nanoscale covariance magnetometry with diamond quantum sensors

论文作者

Rovny, Jared, Yuan, Zhiyang, Fitzpatrick, Mattias, Abdalla, Ahmed I., Futamura, Laura, Fox, Carter, Cambria, Matthew Carl, Kolkowitz, Shimon, de Leon, Nathalie P.

论文摘要

钻石中的氮空位(NV)中心是原子尺度缺陷,旋转相干时间长,可用于感知具有高灵敏度和空间分辨率的磁场。通常,通过单个NV中心平均许多顺序测量值来测量单个点的磁场投影,或者通过在许多NV中心的集合上取出空间平均值来重建磁场分布。在平均许多单个NV中心实验中,这两种技术都丢弃了信息。在这里,我们提出并实施一种新的感应方式,同时测量两个或多个NV中心,并在其信号中提取时间和空间相关性,原本无法访问。在存在环境噪声,量子投影噪声和读数噪声的情况下,我们通过分析得出可测量的两点相关器。我们表明,优化读数噪声对于测量相关性至关重要,并且我们通过使用两个NV中心的旋转式读数进行了实验证明相关施加噪声的测量。我们还为解开局部和非局部噪声源的光谱重建方案实施了光谱重建协议,并证明可以使用两个NV中心的独立控制来测量相关的时间结构。我们的协方差磁力测定方案在研究时空结构因子和动力学方面有许多应用,并在纳米级传感中打开了新的边界。

Nitrogen vacancy (NV) centers in diamond are atom-scale defects with long spin coherence times that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field projection at a single point is measured by averaging many sequential measurements with a single NV center, or the magnetic field distribution is reconstructed by taking a spatial average over an ensemble of many NV centers. In averaging over many single-NV center experiments, both techniques discard information. Here we propose and implement a new sensing modality, whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We analytically derive the measurable two-point correlator in the presence of environmental noise, quantum projection noise, and readout noise. We show that optimizing the readout noise is critical for measuring correlations, and we experimentally demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers. We also implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources, and demonstrate that independent control of two NV centers can be used to measure the temporal structure of correlations. Our covariance magnetometry scheme has numerous applications in studying spatiotemporal structure factors and dynamics, and opens a new frontier in nanoscale sensing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源