论文标题
通过硅纳米颗粒具有吸附的鞭毛原子簇的强旋过滤:对称性和对自旋极化方向的静电控制的作用
Strong Spin Filtering by Silicon Nanoparticles with Adsorbed Bismuth Atom Clusters: Role of Symmetry and Electrostatic Control of the Direction of the Spin Polarization
论文作者
论文摘要
我们基于密度功能理论和紧密的结合模型提出了一项理论研究。我们发现晶曲原子形成由量子隧道屏障隔开的簇。当源和排水管连接到相同的二雄簇簇时,当源和排水管连接到源和排水管与不同的二晶簇时,我们可以预测这些纳米结构在高电导状态下通过这些纳米结构进行强旋滤波。我们将自旋滤波与系统的自旋传输概率矩阵遵循的对称性相关联。我们还预测,对于这样的系统,可以通过更大的角度调节漏极导线中自旋极化的方向,甚至可以通过改变施加到栅极的电压来逆转静电。实验室中这些硅轴纳米结构的实现是可行的。我们希望预测的旋转过滤在实验上可以访问,并且可能与设备应用相关。
We present a theoretical study, based on density functional theory and tight binding modeling, of the electronic structure and spin transport properties of silicon nanoparticles with adsorbed bismuth atoms. We find the bismuth atoms to form clusters separated by quantum tunnel barriers. We predict strong spin filtering by these nanostructures in the high conductance regime when the source and drain leads are connected to the same bismuth cluster and in the low conductance regime when the source and drain leads are connected to different bismuth clusters. We relate the spin filtering to a symmetry obeyed by the spin transmission probability matrix of the system. We also predict that for such systems the direction of the spin polarization in the drain lead can be tuned through large angles and even reversed electrostatically simply by varying the voltage applied to a gate. Realization of these silicon-bismuth nanostructures in the laboratory is feasible. We expect the predicted spin filtering to be experimentally accessible and potentially relevant for device applications.