论文标题

通过融合具有里程碑意义的功能,深层改编成人面部表情

Deep Adaptation of Adult-Child Facial Expressions by Fusing Landmark Features

论文作者

Witherow, Megan A., Samad, Manar D., Diawara, Norou, Bar, Haim Y., Iftekharuddin, Khan M.

论文摘要

面部影响的成像可用于通过成年后的儿童在教育,医疗保健和娱乐等中的应用等。深度卷积神经网络在对成年人的面部表情进行分类方面表现出了令人鼓舞的结果。但是,由于心理物理发展的差异,接受成人基准数据训练的分类器模型不适合学习儿童表情。同样,在成人表达分类中,接受儿童数据训练的模型表现较差。我们建议适应域,以在共享的潜在空间中同时对齐成人和儿童表达的分布,以构成任何领域的稳健分类。此外,面部图像的年龄变化在年龄不变的面部识别中进行了研究,但在成人孩子表达分类中仍未掌握。我们从多个领域中汲取灵感,并提出深层自适应面部表情,将betamix选定的地标特征(面对面)融合,以进行成人孩子表达分类。在文献中,基于与表达,域和身份因素的相关性,使用β分布的混合物分解和选择面部特征。我们使用5倍的交叉验证对两对成人数据集评估面对面。我们提出的面对面方法的表现优于转移学习和其他基线域适应方法,使成人和儿童表达的潜在表示。

Imaging of facial affects may be used to measure psychophysiological attributes of children through their adulthood for applications in education, healthcare, and entertainment, among others. Deep convolutional neural networks show promising results in classifying facial expressions of adults. However, classifier models trained with adult benchmark data are unsuitable for learning child expressions due to discrepancies in psychophysical development. Similarly, models trained with child data perform poorly in adult expression classification. We propose domain adaptation to concurrently align distributions of adult and child expressions in a shared latent space for robust classification of either domain. Furthermore, age variations in facial images are studied in age-invariant face recognition yet remain unleveraged in adult-child expression classification. We take inspiration from multiple fields and propose deep adaptive FACial Expressions fusing BEtaMix SElected Landmark Features (FACE-BE-SELF) for adult-child expression classification. For the first time in the literature, a mixture of Beta distributions is used to decompose and select facial features based on correlations with expression, domain, and identity factors. We evaluate FACE-BE-SELF using 5-fold cross validation for two pairs of adult-child data sets. Our proposed FACE-BE-SELF approach outperforms transfer learning and other baseline domain adaptation methods in aligning latent representations of adult and child expressions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源