论文标题
非添加几何形状和弗罗贝尼乌斯对应关系
Non-Additive Geometry and Frobenius Correspondences
论文作者
论文摘要
代数几何形状的通常语言不适用于算术几何:在真正的序列上是奇异的。我们开发了两种克服这个问题的语言:一种用“向量”或双舞的收集代替戒指,而另一种基于“矩阵”或道具的戒指。这些是[HAR17]的两种语言,但我们省略了带来相当大量简化的互动。一旦了解了Grothendieck脚步,就可以进行精致的通勤条件。正方形的矩阵在结合结合时,会给我们带来弗罗贝尼乌斯内态性的新换环。
The usual language of algebraic geometry is not appropriate for Arithmetical geometry: addition is singular at the real prime. We developed two languages that overcome this problem: one replace rings by the collection of "vectors" or by bi-operads and another based on "matrices" or props. These are the two languages of [Har17], but we omit the involutions which brings considerable simplifications. Once one understands the delicate commutativity condition one can proceed following Grothendieck footsteps exactly. The square matrices, when viewed up to conjugation, give us new commutative rings with Frobenius endomorphisms.