论文标题
不对称内核的随机傅立叶特征
Random Fourier Features for Asymmetric Kernels
论文作者
论文摘要
随机傅立叶特征(RFF)方法是内核方法可扩展性的强大而流行的技术。 RFF的理论基础是基于将对称,确定(PD)函数与概率度量相关联的Bochner定理。这种条件自然地排除了在实践中具有广泛应用的不对称函数,例如有向图,条件概率和不对称内核。然而,在理论和经验上尚不清楚理解不对称函数(内核)及其通过RFF的可伸缩性。在本文中,我们引入了一个复杂的度量,其真实和虚构部分对应于四个有限的正措施,从而扩大了Bochner定理的应用范围。通过这样做,该框架允许通过一种积极度量来处理经典的对称,PD内核;通过签名措施对称,非阳性的确定内核;并通过复杂的措施不对称内核,从而将它们统一为RFF的一般框架,称为Ask-RFF。从统一收敛的角度来看,通过复杂措施通过复杂度量的这种近似方案享有理论保证。在算法实现中,由于总质量的计算而加快了内核近似过程,我们采用了一种基于子集的快速估计方法,该方法优化了子训练集中的总质量,该方法在高维度中享有计算效率。我们的ask-rffs方法在几个典型的大规模数据集上得到了经验验证,并实现了有希望的内核近似性能,这证明了Ask-RFF的有效性。
The random Fourier features (RFFs) method is a powerful and popular technique in kernel approximation for scalability of kernel methods. The theoretical foundation of RFFs is based on the Bochner theorem that relates symmetric, positive definite (PD) functions to probability measures. This condition naturally excludes asymmetric functions with a wide range applications in practice, e.g., directed graphs, conditional probability, and asymmetric kernels. Nevertheless, understanding asymmetric functions (kernels) and its scalability via RFFs is unclear both theoretically and empirically. In this paper, we introduce a complex measure with the real and imaginary parts corresponding to four finite positive measures, which expands the application scope of the Bochner theorem. By doing so, this framework allows for handling classical symmetric, PD kernels via one positive measure; symmetric, non-positive definite kernels via signed measures; and asymmetric kernels via complex measures, thereby unifying them into a general framework by RFFs, named AsK-RFFs. Such approximation scheme via complex measures enjoys theoretical guarantees in the perspective of the uniform convergence. In algorithmic implementation, to speed up the kernel approximation process, which is expensive due to the calculation of total mass, we employ a subset-based fast estimation method that optimizes total masses on a sub-training set, which enjoys computational efficiency in high dimensions. Our AsK-RFFs method is empirically validated on several typical large-scale datasets and achieves promising kernel approximation performance, which demonstrate the effectiveness of AsK-RFFs.