论文标题
数据驱动的适应性,用于稳健的两足球运动,并带有渐进的动力学
Data-driven Adaptation for Robust Bipedal Locomotion with Step-to-Step Dynamics
论文作者
论文摘要
本文介绍了一个在线框架,用于合成敏捷机器人的敏捷运动,该机器人适应未知环境,建模错误和外部干扰。为此,我们利用逐步(S2S)动力学的实现,这些动力学在实现未能动态的机器人上有效 - 假设已知的动态和环境。本文考虑了不确定的模型和环境的情况,并提出了S2S动力学的数据驱动表示,可以通过自适应控制方法来学习,该方法既具有数据效率又易于实现。学到的S2S控制器生成了所需的离散脚放置,然后通过跟踪从给定的脚部放置合成的所需输出来实现在双层机器人的全阶动力学上。拟议方法的好处是双重的。首先,与非自适应基线控制器相比,它提高了机器人在给定所需速度行走的能力。其次,数据驱动的方法可以在各种未知干扰的影响下实现稳定和敏捷的运动:额外的未建模有效载荷,大机器人模型误差,外部干扰力,偏见的速度估计和倾斜的地形。这是通过深入评估证明的,对受到上述干扰的两倍机器人Cassie进行了高保真模拟。
This paper presents an online framework for synthesizing agile locomotion for bipedal robots that adapts to unknown environments, modeling errors, and external disturbances. To this end, we leverage step-to-step (S2S) dynamics which has proven effective in realizing dynamic walking on underactuated robots -- assuming known dynamics and environments. This paper considers the case of uncertain models and environments and presents a data-driven representation of the S2S dynamics that can be learned via an adaptive control approach that is both data-efficient and easy to implement. The learned S2S controller generates desired discrete foot placement, which is then realized on the full-order dynamics of the bipedal robot by tracking desired outputs synthesized from the given foot placement. The benefits of the proposed approach are twofold. First, it improves the ability of the robot to walk at a given desired velocity when compared to the non-adaptive baseline controller. Second, the data-driven approach enables stable and agile locomotion under the effect of various unknown disturbances: additional unmodeled payload, large robot model errors, external disturbance forces, biased velocity estimation, and sloped terrains. This is demonstrated through in-depth evaluation with a high-fidelity simulation of the bipedal robot Cassie subject to the aforementioned disturbances.