论文标题

HAPI:商业ML API预测的大规模纵向数据集

HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions

论文作者

Chen, Lingjiao, Jin, Zhihua, Eyuboglu, Sabri, Ré, Christopher, Zaharia, Matei, Zou, James

论文摘要

Google,Amazon和Microsoft等提供商提供的商业ML API已在许多应用程序中大大简化了ML的采用。许多公司和学者都为使用ML API用于对象检测,OCR和情感分析等任务。处理相同任务的不同ML API可能具有非常异构的性能。此外,API为基础的ML模型也随着时间的推移而发展。随着ML API迅速成为一个有价值的市场,并且是消耗机器学习的广泛方式,因此系统地研究和比较不同的API并表征API如何随时间变化至关重要。但是,由于缺乏数据,该主题目前没有遭到反思。在本文中,我们介绍了HAPI(API的历史),这是1,761,417个商业ML API应用程序的实例(涉及来自亚马逊,Google,Google,IBM,Microsoft和其他提供商的API跨不同的任务,包括图像标记,语音识别和文本挖掘,每次API到202222222。随着API的输出预测/注释和置信度得分。 HAPI是ML API使用情况的第一个大规模数据集,并且是研究ML-AS-A-Service(MLAAS)的独特资源。作为HAPI启用的分析类型的示例,我们表明ML API的性能会随着时间的流逝而大幅变化 - 在特定基准数据集上删除了几个API的精度。即使API的总体性能保持稳定,其误差模式也可以在2020年至2022年之间在不同的数据中转移。此类更改可能会大大影响使用某些ML API作为组件的整个分析管道。随着时间的流逝,我们进一步使用HAPI来研究人口亚组之间商业API的性能差异。 HAPI可以刺激MLAA的不断发展领域的更多研究。

Commercial ML APIs offered by providers such as Google, Amazon and Microsoft have dramatically simplified ML adoption in many applications. Numerous companies and academics pay to use ML APIs for tasks such as object detection, OCR and sentiment analysis. Different ML APIs tackling the same task can have very heterogeneous performance. Moreover, the ML models underlying the APIs also evolve over time. As ML APIs rapidly become a valuable marketplace and a widespread way to consume machine learning, it is critical to systematically study and compare different APIs with each other and to characterize how APIs change over time. However, this topic is currently underexplored due to the lack of data. In this paper, we present HAPI (History of APIs), a longitudinal dataset of 1,761,417 instances of commercial ML API applications (involving APIs from Amazon, Google, IBM, Microsoft and other providers) across diverse tasks including image tagging, speech recognition and text mining from 2020 to 2022. Each instance consists of a query input for an API (e.g., an image or text) along with the API's output prediction/annotation and confidence scores. HAPI is the first large-scale dataset of ML API usages and is a unique resource for studying ML-as-a-service (MLaaS). As examples of the types of analyses that HAPI enables, we show that ML APIs' performance change substantially over time--several APIs' accuracies dropped on specific benchmark datasets. Even when the API's aggregate performance stays steady, its error modes can shift across different subtypes of data between 2020 and 2022. Such changes can substantially impact the entire analytics pipelines that use some ML API as a component. We further use HAPI to study commercial APIs' performance disparities across demographic subgroups over time. HAPI can stimulate more research in the growing field of MLaaS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源