论文标题
基于拓扑绝缘体的狄拉克双曲线超材,带有大模式指数
Topological insulator-based Dirac hyperbolic metamaterial with large mode indices
论文作者
论文摘要
双曲线超材料(HMM)是具有双曲线异频表面的工程材料,可实现一系列新型现象和应用,包括负屈光度,增强的感应和细分表面成像,聚焦和波形。现有的HMM主要在可见的红外光谱范围内起作用,这是由于其组成材料的固有特性。在这里,我们使用拓扑绝缘子(TIS)作为构建块展示了Thz-Range Dirac HMM。我们发现,该结构容纳多达三个高波动体积等离子体极化(VPP)模式,与传输矩阵建模一致。 VPP的模式指数范围从126到531,比传统媒体中VPP模式大的10-100倍,同时保持可比的质量因素。我们将这些特性归因于占据拓扑绝缘体表面状态的电子的二维狄拉克。因为这些是范德华材料,所以这些结构可以在各种底物上的晶圆尺度上生长,从而使它们可以与现有的THZ结构集成并启用下一代THZ光学设备。
Hyperbolic metamaterials (HMMs) are engineered materials with a hyperbolic isofrequency surface, enabling a range of novel phenomena and applications including negative refraction, enhanced sensing, and subdiffraction imaging, focusing, and waveguiding. Existing HMMs primarily work in the visible and infrared spectral range due to the inherent properties of their constituent materials. Here we demonstrate a THz-range Dirac HMM using topological insulators (TIs) as the building blocks. We find that the structure houses up to three high-wavevector volume plasmon polariton (VPP) modes, consistent with transfer matrix modeling. The VPPs have mode indices ranging from 126 to 531, 10-100x larger than observed for VPP modes in traditional media while maintaining comparable quality factors. We attribute these properties to the two-dimensional Dirac nature of the electrons occupying the topological insulator surface states. Because these are van der Waals materials, these structures can be grown at a wafer-scale on a variety of substrates, allowing them to be integrated with existing THz structures and enabling next-generation THz optical devices.