论文标题

多个自由度的纠缠净化的变分量子回路学习

Variational quantum circuit learning of entanglement purification in multiple degrees of freedom

论文作者

Zhang, Hao, Xu, Xusheng, Zhang, Chen, Yung, Man-Hong, Huang, Tao, Liu, Yunjie

论文摘要

纠缠纯化是一种至关重要的技术,可以在嘈杂的大规模量子网络中提供有效的纠缠渠道,但在设计多度自由度(DOF)方面时很复杂。为了轻松有效地执行上述任务,开发一个学习框架以使用多功能型设计纠缠净化是一种有前途的方法,仍然是一个开放的研究问题。受差异量子电路(VQC)的启发,在学习最佳量子操作的近期量子设备方面具有显着优势,在本文中,我们提出了一个有效的VQC框架,用于在多DOF中进行纠缠纯化,并利用它来学习基于后选择后的目标功能的最佳纯化协议。通过正确引入其他电路线,用于代表所有粒子的每个辅助DOF,例如空间和时间,参数化的量子电路可以有效地模拟可扩展的纠缠纯化。为了验证我们的框架,通过低深度量子电路中的替代操作很好地学习了线性光学的著名协议。此外,我们使用多DOF模拟了乘法案例,以显示可扩展性并发现单轮协议。我们的工作提供了一种有效的方法,可以探索多道型和近期量子设备中的纠缠净化协议。

Entanglement purification is a crucial technique for promising the effective entanglement channel in noisy large-scale quantum networks, yet complicated in designing protocols in multi-degree of freedom (DoF). To execute the above tasks easily and effectively, developing a learning framework for designing the entanglement purification with multi-DoF is a promising way and still an open research question. Inspired by variational quantum circuit (VQC) with remarkable advantage in learning optimal quantum operations with near-term quantum devices, in this paper we propose an effective VQC framework for the entanglement purification in multi-DoF and exploit it to learn the optimal purification protocols of the objective function which are based on postselection. By properly introducing additional circuit lines for representing each of the ancillary DoFs of all the particles, e.g., space and time, the parametrized quantum circuit can effectively simulate scalable entanglement purification. To verify our framework, the well-known protocols in linear optics are learned well with alternative operations in low-depth quantum circuit. Moreover, we simulate the multipair cases with multi-DoF to show the scalability and discover one-round protocols. Our work provides an effective way for exploring the entanglement purification protocols in multi-DoF and multipair with near-term quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源