论文标题

具有高斯输入的功能性中心极限定理中的收敛速度急剧

A Sharp Rate of Convergence in the Functional Central Limit Theorem with Gaussian Input

论文作者

Lototsky, S. V.

论文摘要

当基础随机变量是高斯时,经典的中央限制定理(CLT)是微不足道的,但功能性CLT不是。本文的目的是研究连续函数空间中Wasserstein-1度量中固定高斯过程的功能性CLT。建立了匹配的上限和下边界,表明收敛速率稍快地比Lévy-Prokhorov指标中的速度快一些。

When the underlying random variables are Gaussian, the classical Central Limit Theorem (CLT) is trivial, but the functional CLT is not. The objective of the paper is to investigate the functional CLT for stationary Gaussian processes in the Wasserstein-1 metric on the space of continuous functions. Matching upper and lower bounds are established, indicating that the convergence rate is slightly faster than in the Lévy-Prokhorov metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源