论文标题

站点网络:使用全球自我注意力和真实空间超级电池来捕获晶体结构中的远距离相互作用

Site-Net: Using global self-attention and real-space supercells to capture long-range interactions in crystal structures

论文作者

Moran, Michael, Gaultois, Michael W., Gusev, Vladimir V., Rosseinsky, Matthew J.

论文摘要

站点网络是一种变压器结构,它将无机材料的周期性晶体结构建模为标记的原子集,并且完全依赖于全球自我注意力和几何信息来指导学习。站点网络流程标准的晶体学信息文件生成了大型的真实空间超级电池,并且该模型灵活地学习了所有原子位点之间交互的重要性。探测了注意机制以揭示现场网络可以学习晶体结构中的长距离相互作用,并且特定的注意力头变得专门处理主要是短期或长距离相互作用。我们使用单个图形处理单元(GPU)执行初步的超参数搜索和训练站点网络,并在标准带隙回归任务上显示站点网络实现最新性能。

Site-Net is a transformer architecture that models the periodic crystal structures of inorganic materials as a labelled point set of atoms and relies entirely on global self-attention and geometric information to guide learning. Site-Net processes standard crystallographic information files to generate a large real-space supercell, and the importance of interactions between all atomic sites is flexibly learned by the model for the prediction task presented. The attention mechanism is probed to reveal Site-Net can learn long-range interactions in crystal structures, and that specific attention heads become specialized to deal with primarily short- or long-range interactions. We perform a preliminary hyperparameter search and train Site-Net using a single graphics processing unit (GPU), and show Site-Net achieves state-of-the-art performance on a standard band gap regression task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源