论文标题
$(\ infty,n)$ - 类别的$θ_n$ - 模型的离散性和完整性
Discreteness and completeness for $Θ_n$-models of $(\infty,n)$-categories
论文作者
论文摘要
我们为$θ_n$空间的变体建立笛卡尔模型结构,其中我们通过离散性条件替换某些或所有完整性条件。我们证明它们彼此相等,并且与$θ_n$ -Space模型相同,我们给出了一个标准,其离散性和完整性组合提供了非重叠模型。在$θ_n$ -Diagrams的框架中,可以将这些模型视为Segal类别的概括。在此过程中,我们给出了$θ_n$ - 空间模型中DWYER-KAN等价的表征,将Rezk赋予完整的Segal空间的概括。
We establish cartesian model structures for variants of $Θ_n$-spaces in which we replace some or all of the completeness conditions by discreteness conditions. We prove that they are all equivalent to each other and to the $Θ_n$-space model, and we give a criterion for which combinations of discreteness and completeness give non-overlapping models. These models can be thought of as generalizations of Segal categories in the framework of $Θ_n$-diagrams. In the process, we give a characterization of the Dwyer-Kan equivalences in the $Θ_n$-space model, generalizing the one given by Rezk for complete Segal spaces.