论文标题

探明量子力学和多数之间可能的二次虫洞

Prospecting a Possible Quadratic Wormhole Between Quantum Mechanics and Plurality

论文作者

Fabinger, Michal, Freedman, Michael H., Weyl, E. Glen

论文摘要

我们说明了二次资助(Buterin et al。,2019)之间的一些正式对称性,这是一种(近似最佳的)公共利益资金水平的(大约最佳)确定公共利益水平的机制,而Born(1926)量子力学中的Born(1926)规则将波浪表示转换为概率分布,通过铜制分布,我们称“量子量子量为Quartum Quartim Quartic Quartic Quartic Quartic Quartic Quartic Quartic Quartic Quartic Quartic Quartic figartic”。我们建议进一步研究这些对称性的实际实用性。我们在同伴博客文章中讨论了更深入的潜在解释。

We illustrate some formal symmetries between Quadratic Funding (Buterin et al., 2019), a mechanism for the (approximately optimal) determination of public good funding levels, and the Born (1926) rule in Quantum Mechanics, which converts the wave representation into a probability distribution, through a bridging formulation we call "Quantum Quartic Finance". We suggest further directions for investigating the practical utility of these symmetries. We discuss potential interpretations in greater depth in a companion blog post.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源