论文标题
使用深度学习从3D牙科模型的自动牙齿分割:对可以从单个3D牙科模型中学到的内容的定量分析
Automatic Tooth Segmentation from 3D Dental Model using Deep Learning: A Quantitative Analysis of what can be learnt from a Single 3D Dental Model
论文作者
论文摘要
3D牙齿分割是数字正畸技术的重要任务。已经提出了几种深度学习方法,用于从3D牙科模型或口腔内扫描中进行自动牙齿分割。这些方法需要注释的3D口内扫描。手动注释3D口腔内扫描是一项费力的任务。一种方法是设计自学方法来减少手动标签工作。与其他类型的点云数据(例如场景点云或形状点云数据)相比,3D牙齿点云数据具有非常规的结构,并且具有强大的形状。我们查看可以从单个3D口内扫描中学到多少代表性信息。我们在十种不同的方法的帮助下进行定量评估,其中六种是通用点云分割方法,而其他四种是特定于牙齿分割的方法。令人惊讶的是,我们发现,在单个3D口内扫描训练中,骰子得分可以高达0.86,而完整的训练组可得分为0.94。我们得出的结论是,分割方法可以在适当的条件下从单个3D牙齿点云中学习大量信息,例如数据增强。我们是第一个从单个3D口内扫描中进行定量评估并证明深度学习方法的表示能力的人。这可以通过最大程度地利用可用的数据来实现在极端数据限制方案下构建牙齿分割的自学方法。
3D tooth segmentation is an important task for digital orthodontics. Several Deep Learning methods have been proposed for automatic tooth segmentation from 3D dental models or intraoral scans. These methods require annotated 3D intraoral scans. Manually annotating 3D intraoral scans is a laborious task. One approach is to devise self-supervision methods to reduce the manual labeling effort. Compared to other types of point cloud data like scene point cloud or shape point cloud data, 3D tooth point cloud data has a very regular structure and a strong shape prior. We look at how much representative information can be learnt from a single 3D intraoral scan. We evaluate this quantitatively with the help of ten different methods of which six are generic point cloud segmentation methods whereas the other four are tooth segmentation specific methods. Surprisingly, we find that with a single 3D intraoral scan training, the Dice score can be as high as 0.86 whereas the full training set gives Dice score of 0.94. We conclude that the segmentation methods can learn a great deal of information from a single 3D tooth point cloud scan under suitable conditions e.g. data augmentation. We are the first to quantitatively evaluate and demonstrate the representation learning capability of Deep Learning methods from a single 3D intraoral scan. This can enable building self-supervision methods for tooth segmentation under extreme data limitation scenario by leveraging the available data to the fullest possible extent.