论文标题

关于矩阵空间的大致换算性

On approximate commutativity of spaces of matrices

论文作者

Omladič, Matjaž, Radjavi, Heydar, Šivic, Klemen

论文摘要

$ M_N(\ Mathbb {C})$的交换子空间的最大维度是已知的。当达到最大维度时,这种子空间的结构也是如此。我们考虑这些结果的扩展,并提出以下自然问题:如果$ v $是$ m_n(\ mathbb {c})$的子空间,而$ k $的整数小于$ n $,以至于每对$ a $ a $ a $ a $ a $ b $ $ v $的成员,$ ba $ ab ab $ a $ ba $,然后是$ k $,然后是$ k $,然后是dimension?如果达到最大值,我们可以确定$ v $的结构吗?我们回答第一个问题。我们还提出了关于第二个问题的猜想,尤其意味着这种子空间$ v $必须是代数,就像在已知的$ k = 0 $的情况下一样。如果已经假定为代数,我们将证明$ V $的拟议结构。

The maximal dimension of commutative subspaces of $M_n(\mathbb{C})$ is known. So is the structure of such a subspace when the maximal dimension is achieved. We consider extensions of these results and ask the following natural questions: If $V$ is a subspace of $M_n(\mathbb{C})$ and $k$ is an integer less than $n$, such that for every pair $A$ and $B$ of members of $V$, the rank of the commutator $AB - BA$ is at most $k$, then how large can the dimension of $V$ be? If this maximum is achieved, can we determine the structure of $V$? We answer the first question. We also propose a conjecture on the second question which implies, in particular, that such a subspace $V$ has to be an algebra, just as in the known case of $k = 0$. We prove the proposed structure of $V$ if it is already assumed to be an algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源