论文标题
Toeplitz密度算子及其可分离性特性
Toeplitz Density Operators and their Separability Properties
论文作者
论文摘要
Toeplitz运营商(也称为定位运算符)是Berezin和Shubin研究的众所周知的反玩具伪差异操作员的概括。当toeplitz运算符是正半准的,并且具有跟踪量,我们称之为密度toeplitz运算符。此类操作员在量子力学中代表物理状态。在本文中,当Toeplitz运算符属于某些众所周知的功能空间(例如Feichtinger代数)时,我们研究了Toeplitz运算符的几个方面,并(暂时)讨论其可分离性能,并强调了高斯案例。
Toeplitz operators (also called localization operators) are a generalization of the well-known anti-Wick pseudodifferential operators studied by Berezin and Shubin. When a Toeplitz operator is positive semi-definite and has trace one we call it a density Toeplitz operator. Such operators represent physical states in quantum mechanics. In the present paper we study several aspects of Toeplitz operators when their symbols belong to some well-known functional spaces (e.g. the Feichtinger algebra) and discuss (tentatively) their separability properties with an emphasis on the Gaussian case.