论文标题
傅立叶域
Fourier Domain
论文作者
论文摘要
天文来源随时间的函数的亮度变化是该来源物理学的关键探针。周期性和准周期信号是系统中基本时间(和长度)尺度的指标,而随机过程有助于揭示湍流吸积过程的性质。研究时间变异性的一种关键方法是通过傅立叶方法,即信号分解为正弦波,从而产生频率空间中数据的表示。将扩展到\ textIt {频谱时序}}构建在傅立叶变换上的方法不仅可以帮助我们表征(准)周期性和随机过程,而且还可以发现时间,光子能量和磁通量之间的复杂关系,以帮助构建更好的积聚过程模型和其他高可增效的动态物理学。在本章中,我们提供了最重要的相关方法的广泛但实用的概述。
The changes in brightness of an astronomical source as a function of time are key probes into that source's physics. Periodic and quasi-periodic signals are indicators of fundamental time (and length) scales in the system, while stochastic processes help uncover the nature of turbulent accretion processes. A key method of studying time variability is through Fourier methods, the decomposition of the signal into sine waves, which yields a representation of the data in frequency space. With the extension into \textit{spectral timing} the methods built on the Fourier transform can not only help us characterize (quasi-)periodicities and stochastic processes, but also uncover the complex relationships between time, photon energy and flux in order to help build better models of accretion processes and other high-energy dynamical physics. In this Chapter, we provide a broad, but practical overview of the most important relevant methods.