论文标题

通过堆栈的模棱两可的广义共同学

Equivariant generalized cohomology via stacks

论文作者

Khan, Adeel A., Ravi, Charanya

论文摘要

我们证明了一种陈述的一种一般形式,即商堆的共同体可以通过Borel Construction计算。它还适用于广义共同体学理论等诸如动机共同体学和代数恢复主义的局势扩展。我们用它来证明(较高的)earivariant grothendieck-riemann-roch定理,比较了borel-equivariant G理论和均衡群。我们还根据X上的X上的非公平轴束和在其Borel构造上的避雷器进行了bernstein-lunts型粘合描述。

We prove a general form of the statement that the cohomology of a quotient stack can be computed by the Borel construction. It also applies to the lisse extensions of generalized cohomology theories like motivic cohomology and algebraic cobordism. We use this to prove a (higher) equivariant Grothendieck-Riemann-Roch theorem, comparing Borel-equivariant G-theory and equivariant Chow groups. We also give a Bernstein-Lunts-type gluing description of the infinity-category of equivariant sheaves on a scheme X, in terms of nonequivariant sheaves on X and sheaves on its Borel construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源