论文标题

整个真理,除了真理:忠实而可控的对话响应,并通过数据流转导和限制解码

The Whole Truth and Nothing But the Truth: Faithful and Controllable Dialogue Response Generation with Dataflow Transduction and Constrained Decoding

论文作者

Fang, Hao, Balakrishnan, Anusha, Jhamtani, Harsh, Bufe, John, Crawford, Jean, Krishnamurthy, Jayant, Pauls, Adam, Eisner, Jason, Andreas, Jacob, Klein, Dan

论文摘要

在现实世界中的对话系统中,生成的文本必须是真实的和信息丰富的,同时保持流利并遵守规定的风格。对于语言生成中的两个主要范式而言,同时满足这些约束是很难的:神经语言建模和基于规则的生成。我们描述了对话响应产生的混合体系结构,结合了这两个范式的优势。该体系结构的第一个组成部分是一种基于规则的内容选择模型,该模型使用称为DataFlow Transduction的新正式框架定义,该框架使用声明性规则将对话代理的动作及其结果(表示为数据流图表示)转换为代表上下文可接受响应的空间的无上下文语法。第二个组件是一种受约束的解码过程,它使用这些语法来限制神经语言模型的输出,从而选择流利的话语。我们的实验表明,该系统在人类对流利,相关性和真实性的评估中的表现都优于基于规则的方法。

In a real-world dialogue system, generated text must be truthful and informative while remaining fluent and adhering to a prescribed style. Satisfying these constraints simultaneously is difficult for the two predominant paradigms in language generation: neural language modeling and rule-based generation. We describe a hybrid architecture for dialogue response generation that combines the strengths of both paradigms. The first component of this architecture is a rule-based content selection model defined using a new formal framework called dataflow transduction, which uses declarative rules to transduce a dialogue agent's actions and their results (represented as dataflow graphs) into context-free grammars representing the space of contextually acceptable responses. The second component is a constrained decoding procedure that uses these grammars to constrain the output of a neural language model, which selects fluent utterances. Our experiments show that this system outperforms both rule-based and learned approaches in human evaluations of fluency, relevance, and truthfulness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源