论文标题
游戏理论目标空间规划
Game-theoretic Objective Space Planning
论文作者
论文摘要
在对抗环境中同时制定竞争策略并同时执行连续运动计划是一个挑战性的问题。此外,理解其他代理的意图对于在对抗性多机构环境中部署自主系统至关重要。现有方法要么通过分组类似的控制输入,牺牲运动计划中的绩效,要么在无法解释的潜在空间中分组代理行动,从而产生难以理解的代理行为。此外,最受欢迎的政策优化框架并未认识到行动的长期影响并变得近视。本文通过抽象提出了一种代理动作离散方法,该方法提供了对代理动作的明确意图,有效的脱机式构成综合管道以及使用反事实遗憾最小化功能近似的计划策略。最后,我们在正面的赛车环境中实验验证了对缩放自动驾驶汽车的发现。我们证明,使用拟议的框架可以显着改善学习,提高对不同对手的获胜率,并且可以将改进转移到看不见的环境中,以看不见的对手。
Generating competitive strategies and performing continuous motion planning simultaneously in an adversarial setting is a challenging problem. In addition, understanding the intent of other agents is crucial to deploying autonomous systems in adversarial multi-agent environments. Existing approaches either discretize agent action by grouping similar control inputs, sacrificing performance in motion planning, or plan in uninterpretable latent spaces, producing hard-to-understand agent behaviors. Furthermore, the most popular policy optimization frameworks do not recognize the long-term effect of actions and become myopic. This paper proposes an agent action discretization method via abstraction that provides clear intentions of agent actions, an efficient offline pipeline of agent population synthesis, and a planning strategy using counterfactual regret minimization with function approximation. Finally, we experimentally validate our findings on scaled autonomous vehicles in a head-to-head racing setting. We demonstrate that using the proposed framework significantly improves learning, improves the win rate against different opponents, and the improvements can be transferred to unseen opponents in an unseen environment.