论文标题
SF-DST:辅助任务几乎没有射击自我喂养阅读理解对话状态跟踪
SF-DST: Few-Shot Self-Feeding Reading Comprehension Dialogue State Tracking with Auxiliary Task
论文作者
论文摘要
几乎没有示波的对话状态跟踪(DST)模型,即使使用少量数据,也具有可靠准确性的用户请求。在本文中,我们介绍了一个无本体的几张DST,并具有自喂养的信念状态输入。自我喂养的信念状态输入通过总结以前的对话来提高多转向对话的准确性。另外,我们新制定了一个插槽辅助任务。这项新的辅助任务有助于分类对话中是否提到了一个插槽。我们的模型在Multiwoz 2.0上的四个域中获得了几次射门设置的最佳分数。
Few-shot dialogue state tracking (DST) model tracks user requests in dialogue with reliable accuracy even with a small amount of data. In this paper, we introduce an ontology-free few-shot DST with self-feeding belief state input. The self-feeding belief state input increases the accuracy in multi-turn dialogue by summarizing previous dialogue. Also, we newly developed a slot-gate auxiliary task. This new auxiliary task helps classify whether a slot is mentioned in the dialogue. Our model achieved the best score in a few-shot setting for four domains on multiWOZ 2.0.