论文标题

Q构造的整数衍生自副整数及其应用

q-deformed integers derived from pairs of coprime integers and its applications

论文作者

Wakui, Michihisa

论文摘要

与群集代数,蛇形图和Q-Integers有关,Kyungyong Lee和Ralf Schiffler最近发现了一个用于计算(归一化的)Jones Jones多项式链接的公式,以持续的分数扩展有理数。 Sophie Morier-Genoud和Valentin Ovsienko引入了Q呈现的持续分数,并表明,通过使用它们,A_N类型A_N的归一化琼斯多项式计数的每个系数。在本文中,我们介绍了由成对的副整体定义的Q构造的整数,这些整数是由分母和其Q呈现的Q构造的分子持续的持续分数所激发的,并给出了计算(归一化的)琼斯多项式链接的有效算法。研究了由成对的副整数定义的Q-智能者的各种特性,并显示了其应用。

In connection with cluster algebras, snake graphs and q-integers, Kyungyong Lee and Ralf Schiffler recently found a formula for computing the (normalized) Jones polynomials of rational links in terms of continued fraction expansion of rational numbers. Sophie Morier-Genoud and Valentin Ovsienko introduced q-deformed continued fractions, and showed that by using them each coefficient of the normalized Jones polynomial counted quiver representations of type A_n. In this paper we introduce q-deformed integers defined by pairs of coprime integers, which are motivated by the denominators and the numerators of their q-deformed continued fractions, and give an efficient algorithm for computing the (normalized) Jones polynomials of rational links. Various properties of q-integers defined by pairs of coprime integers are investigated and shown its applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源