论文标题

dessins d'Enfants的等效类别有两个顶点

Equivalence classes of dessins d'enfants with two vertices

论文作者

Horie, Madoka

论文摘要

让$ n $成为一个积极的整数。对于任何积极的整数$ l \ leq n $和$ n $的任何正数$ r $ r $ r $ r $ r $,我们列举了具有$ n $边缘,$ l $ faces和两个顶点的dessins d'Enfants的等价类别,其自动形态群体是订单$ r $的循环。此外,对于任何非负整数$ h $,我们列举了具有$ n $边缘的Dessins的等效类别,$ h $ faces of Leg $ 2 $带有$ h \ leq n $的$ 2 $和两个顶点,其自动形态群体是订单$ r $的循环。我们的论点本质上是基于所有dessins的自然一对一对应关系,其$ n $边缘与所有成对排列的等价类别具有与$ n $ $ n $的对称群体的及物子组的所有排列的等价类。

Let $N$ be a positive integer. For any positive integer $L\leq N$ and any positive divisor $r$ of $N$, we enumerate the equivalence classes of dessins d'enfants with $N$ edges, $L$ faces and two vertices whose automorphism groups are cyclic of order $r$. Further, for any non-negative integer $h$, we enumerate the equivalence classes of dessins with $N$ edges, $h$ faces of degree $2$ with $h\leq N$, and two vertices, whose automorphism groups are cyclic of order $r$. Our arguments are essentially based upon a natural one-to-one correspondence of the equivalence classes of all dessins with $N$ edges to the equivalence classes of all pairs of permutations with components generating transitive subgroups of the symmetric group of degree $N$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源