论文标题
在2.43骰子掷骰中击中Prime(平均)
Hitting a prime in 2.43 dice rolls (on average)
论文作者
论文摘要
直到所有卷的总和都是素数,直到第一次是素数是什么?我们计算此随机变量的期望和方差,达到小于10^{-4}的添加误差。这是Dasgupta(2017)在数学统计研究所公告中提出的难题的解决方案,在该公报中,已发表的解决方案不完整。证明很简单,将基本的动态编程算法与快速MATLAB计算和有关素数分布的基本事实相结合。
What is the number of rolls of fair 6-sided dice until the first time the total sum of all rolls is a prime? We compute the expectation and the variance of this random variable up to an additive error of less than 10^{-4}. This is a solution to a puzzle suggested by DasGupta (2017) in the Bulletin of the Institute of Mathematical Statistics, where the published solution is incomplete. The proof is simple, combining a basic dynamic programming algorithm with a quick Matlab computation and basic facts about the distribution of primes.