论文标题
多模式数据的统一多任务语义通信系统
A Unified Multi-Task Semantic Communication System for Multimodal Data
论文作者
论文摘要
面向任务的语义通信已取得了显着的性能增长。但是,在更改任务或需要存储多个模型以执行不同任务时,必须更新语义通信中的深层神经网络。为了解决这个问题,我们开发了一个统一的深度学习语义通信系统(U-Deepsc),其中统一的端到端框架可以使用多种数据模式服务许多不同的任务。随着所需功能的数量因任务而异,我们提出了一个矢量动态方案,该方案可以调整不同任务的传输符号的数量。此外,我们的动态方案还可以自适应地调整不同通道条件下传输特征的数量,以优化传输效率。特别是,我们设计了一个轻巧的特征选择模块(FSM)来评估特征向量的重要性,该功能向量可以层次掉落冗余特征向量并显着加速推理。为了减少传输开销,我们设计了一个统一的代码簿,用于功能表示以服务多个任务,其中只能传输这些特定于任务特定功能的索引。根据仿真结果,所提出的U-Deepsc的性能与为特定任务设计的面向任务的语义通信系统的性能可比,但变速箱开销和模型大小都大大降低。
Task-oriented semantic communications have achieved significant performance gains. However, the employed deep neural networks in semantic communications have to be updated when the task is changed or multiple models need to be stored for performing different tasks. To address this issue, we develop a unified deep learning-enabled semantic communication system (U-DeepSC), where a unified end-to-end framework can serve many different tasks with multiple modalities of data. As the number of required features varies from task to task, we propose a vector-wise dynamic scheme that can adjust the number of transmitted symbols for different tasks. Moreover, our dynamic scheme can also adaptively adjust the number of transmitted features under different channel conditions to optimize the transmission efficiency. Particularly, we devise a lightweight feature selection module (FSM) to evaluate the importance of feature vectors, which can hierarchically drop redundant feature vectors and significantly accelerate the inference. To reduce the transmission overhead, we then design a unified codebook for feature representation to serve multiple tasks, where only the indices of these task-specific features in the codebook are transmitted. According to the simulation results, the proposed U-DeepSC achieves comparable performance to the task-oriented semantic communication system designed for a specific task but with significant reduction in both transmission overhead and model size.