论文标题

旨在改善域移位下的对象检测的校准

Towards Improving Calibration in Object Detection Under Domain Shift

论文作者

Munir, Muhammad Akhtar, Khan, Muhammad Haris, Sarfraz, M. Saquib, Ali, Mohsen

论文摘要

随着基于深度神经网络的解决方案,更容易地将其纳入现实世界应用中,它一直在迫切要求,即这样的模型(尤其是在安全至关重要的环境中)的预测是高度准确且精心校准的。尽管已经提出了一些针对DNN校准的技术,但它们仅限于视觉分类应用和内域预测。不幸的是,几乎没有什么或没有注意力在解决基于DNN的视觉对象探测器的校准方面,在许多决策系统中占据相似的空间和重要性,就像其视觉分类一样。在这项工作中,我们研究了基于DNN的对象检测模型的校准,尤其是在域移位下。为此,我们首先提出了一个新的,即插即用的火车时间校准损失,以进行对象检测(以TCD为单位)。它可以与各种应用特定的损失函数一起用作辅助损耗函数,以改善检测校准。其次,我们设计了一种新的隐式技术,用于改善基于自我训练的域自适应检测器的校准,具有一种新的不确定性量化机制用于对象检测。我们证明,TCD能够在不同基于DNN的对象检测范式上以显着的边缘(1)在内域和外域预测中进行明显的边缘(1)增强校准,并且(2)在具有挑战性的适应方案中,不同域自适应检测器中的不同域自适应检测器中的校准范围(2)。最后,我们从经验上表明,我们的隐式校准技术可以在适应过程中与TCD同时使用,以进一步增强不同域移位方案的校准。

With deep neural network based solution more readily being incorporated in real-world applications, it has been pressing requirement that predictions by such models, especially in safety-critical environments, be highly accurate and well-calibrated. Although some techniques addressing DNN calibration have been proposed, they are only limited to visual classification applications and in-domain predictions. Unfortunately, very little to no attention is paid towards addressing calibration of DNN-based visual object detectors, that occupy similar space and importance in many decision making systems as their visual classification counterparts. In this work, we study the calibration of DNN-based object detection models, particularly under domain shift. To this end, we first propose a new, plug-and-play, train-time calibration loss for object detection (coined as TCD). It can be used with various application-specific loss functions as an auxiliary loss function to improve detection calibration. Second, we devise a new implicit technique for improving calibration in self-training based domain adaptive detectors, featuring a new uncertainty quantification mechanism for object detection. We demonstrate TCD is capable of enhancing calibration with notable margins (1) across different DNN-based object detection paradigms both in in-domain and out-of-domain predictions, and (2) in different domain-adaptive detectors across challenging adaptation scenarios. Finally, we empirically show that our implicit calibration technique can be used in tandem with TCD during adaptation to further boost calibration in diverse domain shift scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源