论文标题

使用共识平衡的稀疏视图CT重建的多订单融合

Multi-Pose Fusion for Sparse-View CT Reconstruction Using Consensus Equilibrium

论文作者

Yang, Diyu, Kemp, Craig A. J., Buzzard, Gregery T., Bouman, Charles A.

论文摘要

CT成像通过从投影集合中重建感兴趣的对象来起作用。诸如过滤后背影(FBP)之类的传统方法在围绕固定旋转轴上获取的投影图像上工作。但是,对于某些CT问题,希望从从多个旋转轴获取的投影数据中执行关节重建。 在本文中,我们提出了多孔融合,这是一种新型算法,该算法从单个对象的多个姿势中获得的CT扫描进行了联合断层造影重建,每个对象都有一个独特的旋转轴。我们的方法使用多代理共识均衡(MACE),即插头播放的扩展,作为从不同姿势集成投影数据的框架。我们将我们的方法应用于模拟数据,并证明比单姿势重建可以实现更好的重建结果。

CT imaging works by reconstructing an object of interest from a collection of projections. Traditional methods such as filtered-back projection (FBP) work on projection images acquired around a fixed rotation axis. However, for some CT problems, it is desirable to perform a joint reconstruction from projection data acquired from multiple rotation axes. In this paper, we present Multi-Pose Fusion, a novel algorithm that performs a joint tomographic reconstruction from CT scans acquired from multiple poses of a single object, where each pose has a distinct rotation axis. Our approach uses multi-agent consensus equilibrium (MACE), an extension of plug-and-play, as a framework for integrating projection data from different poses. We apply our method on simulated data and demonstrate that Multi-Pose Fusion can achieve a better reconstruction result than single pose reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源