论文标题

使用近似地球学的无监督意见摘要

Unsupervised Opinion Summarization Using Approximate Geodesics

论文作者

Chowdhury, Somnath Basu Roy, Monath, Nicholas, Dubey, Avinava, Ahmed, Amr, Chaturvedi, Snigdha

论文摘要

意见摘要是创建摘要的任务,从而从用户评论中获取流行意见。在本文中,我们介绍了Geodesic Summarizer(GeoSumm),这是一个新型系统,可执行无监督的提取意见摘要。 GeoSumm涉及基于编码器的表示模型,该模型将文本表示为潜在语义单元的分布。 GeoSumm通过在多个解码器层上对预训练的文本表示进行词典学习来生成这些表示形式。然后,我们使用这些表示形式使用新型的基于大地测量距离的评分机制来量化审查句子的相关性。我们使用相关性分数来确定流行意见,以构成一般和特定方面的摘要。我们提出的模型GeoSumm在三个意见摘要数据集上实现了最先进的性能。我们执行其他实验来分析模型的功能并展示跨不同域{\ x}的概括能力。

Opinion summarization is the task of creating summaries capturing popular opinions from user reviews. In this paper, we introduce Geodesic Summarizer (GeoSumm), a novel system to perform unsupervised extractive opinion summarization. GeoSumm involves an encoder-decoder based representation learning model, that generates representations of text as a distribution over latent semantic units. GeoSumm generates these representations by performing dictionary learning over pre-trained text representations at multiple decoder layers. We then use these representations to quantify the relevance of review sentences using a novel approximate geodesic distance based scoring mechanism. We use the relevance scores to identify popular opinions in order to compose general and aspect-specific summaries. Our proposed model, GeoSumm, achieves state-of-the-art performance on three opinion summarization datasets. We perform additional experiments to analyze the functioning of our model and showcase the generalization ability of {\X} across different domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源