论文标题

HardNet-DFUS:增强的谐波连接网络,用于糖尿病足溃疡图像分割和结肠镜检查息肉分段

HarDNet-DFUS: An Enhanced Harmonically-Connected Network for Diabetic Foot Ulcer Image Segmentation and Colonoscopy Polyp Segmentation

论文作者

Liao, Ting-Yu, Yang, Ching-Hui, Lo, Yu-Wen, Lai, Kuan-Ying, Shen, Po-Huai, Lin, Youn-Long

论文摘要

我们提出了一种神经网络结构,用于糖尿病足溃疡和结肠镜检查息肉的医学图像分割。糖尿病足溃疡是由糖尿病的神经性和血管并发症引起的。为了提供适当的诊断和治疗,伤口护理专业人员需要从脚伤中提取准确的形态特征。使用计算机辅助系统是一种提取相关形态特征并分割病变的有前途的方法。 We propose a convolution neural network called HarDNet-DFUS by enhancing the backbone and replacing the decoder of HarDNet-MSEG, which was SOTA for colonoscopy polyp segmentation in 2021. For the MICCAI 2022 Diabetic Foot Ulcer Segmentation Challenge (DFUC2022), we train HarDNet-DFUS using the DFUC2022 dataset and increase its robustness by means of five-fold cross在DFUC2022的验证阶段验证,测试时间增加等,HardNet-DFUS达到0.7063平均骰子,在所有参与者中排名第三。在DFUC2022的最终测试阶段,它达到了0.7287的平均骰子,并且是第一名。 Hardnet-Dfus还为结肠镜检查息肉分割任务提供了出色的性能。它在著名的Kvasir数据集上达到了0.924的平均骰子,比原始硬核MSEG提高了1.2 \%。这些代码可在https://github.com/kytimmylai/dfuc2022(用于糖尿病足溃疡细分)和https://github.com/yuwenlo/hardnet-dfus(用于结肠镜检查polyp分段)。

We present a neural network architecture for medical image segmentation of diabetic foot ulcers and colonoscopy polyps. Diabetic foot ulcers are caused by neuropathic and vascular complications of diabetes mellitus. In order to provide a proper diagnosis and treatment, wound care professionals need to extract accurate morphological features from the foot wounds. Using computer-aided systems is a promising approach to extract related morphological features and segment the lesions. We propose a convolution neural network called HarDNet-DFUS by enhancing the backbone and replacing the decoder of HarDNet-MSEG, which was SOTA for colonoscopy polyp segmentation in 2021. For the MICCAI 2022 Diabetic Foot Ulcer Segmentation Challenge (DFUC2022), we train HarDNet-DFUS using the DFUC2022 dataset and increase its robustness by means of five-fold cross validation, Test Time Augmentation, etc. In the validation phase of DFUC2022, HarDNet-DFUS achieved 0.7063 mean dice and was ranked third among all participants. In the final testing phase of DFUC2022, it achieved 0.7287 mean dice and was the first place winner. HarDNet-DFUS also deliver excellent performance for the colonoscopy polyp segmentation task. It achieves 0.924 mean Dice on the famous Kvasir dataset, an improvement of 1.2\% over the original HarDNet-MSEG. The codes are available on https://github.com/kytimmylai/DFUC2022 (for Diabetic Foot Ulcers Segmentation) and https://github.com/YuWenLo/HarDNet-DFUS (for Colonoscopy Polyp Segmentation).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源