论文标题

数据泄露风险的统计建模:识别和通知的时间

Statistical Modeling of Data Breach Risks: Time to Identification and Notification

论文作者

Xu, Maochao, Nguyen, Quynh Nhu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

It is very challenging to predict the cost of a cyber incident owing to the complex nature of cyber risk. However, it is inevitable for insurance companies who offer cyber insurance policies. The time to identifying an incident and the time to noticing the affected individuals are two important components in determining the cost of a cyber incident. In this work, we initialize the study on those two metrics via statistical modeling approaches. Particularly, we propose a novel approach to imputing the missing data, and further develop a dependence model to capture the complex pattern exhibited by those two metrics. The empirical study shows that the proposed approach has a satisfactory predictive performance and is superior to other commonly used models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源