论文标题

使用对抗网络的盲人和通道不可能的均衡

Blind and Channel-agnostic Equalization Using Adversarial Networks

论文作者

Lauinger, Vincent, Hoffmann, Manuel, Ney, Jonas, Wehn, Norbert, Schmalen, Laurent

论文摘要

由于自动驾驶,物联网和流媒体服务的快速发展,现代通信系统必须应对不同的渠道条件以及用户和设备的稳步增加。这以及仍在上升的带宽需求只能通过智能网络自动化来满足,这需要高度灵活和盲目的收发器算法。为了应对这些挑战,我们提出了一种新颖的自适应均衡计划,该计划通过训练用对抗性网络训练均衡器来利用深度学习的繁荣进步。学习仅基于发射信号的统计数据,因此,它对通道模型的实际发送符号和不可知论是盲目的。所提出的方法独立于均衡器拓扑,并实现了强大的基于神经网络的均衡器的应用。在这项工作中,我们证明了这一概念在对线性和非线性传输通道的模拟中,并证明了所提出的盲目学习方案的能力,以接近非盲均衡器的性能。此外,我们提供了理论观点,并强调了方法的挑战。

Due to the rapid development of autonomous driving, the Internet of Things and streaming services, modern communication systems have to cope with varying channel conditions and a steadily rising number of users and devices. This, and the still rising bandwidth demands, can only be met by intelligent network automation, which requires highly flexible and blind transceiver algorithms. To tackle those challenges, we propose a novel adaptive equalization scheme, which exploits the prosperous advances in deep learning by training an equalizer with an adversarial network. The learning is only based on the statistics of the transmit signal, so it is blind regarding the actual transmit symbols and agnostic to the channel model. The proposed approach is independent of the equalizer topology and enables the application of powerful neural network based equalizers. In this work, we prove this concept in simulations of different -- both linear and nonlinear -- transmission channels and demonstrate the capability of the proposed blind learning scheme to approach the performance of non-blind equalizers. Furthermore, we provide a theoretical perspective and highlight the challenges of the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源