论文标题

在原月经磁盘的温暖分子层中,不同程度的氮和碳耗尽

Different degrees of nitrogen and carbon depletion in the warm molecular layers of protoplanetary disks

论文作者

Furuya, Kenji, Lee, Seokho, Nomura, Hideko

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Observations have revealed that the elemental abundances of carbon and oxygen in the warm molecular layers of some protoplanetary disks are depleted compared to those is the interstellar medium by a factor of ~10-100. Meanwhile, little is known about nitrogen. To investigate the time evolution of nitrogen, carbon, and oxygen elemental abundances in disks, we develop a one-dimensional model that incorporates dust settling, turbulent diffusion of dust and ices, as well as gas-ice chemistry including the chemistry driven by stellar UV/X-rays and the galactic cosmic rays. We find that gaseous CO in the warm molecular layer is converted to CO2 ice and locked up near the midplane via the combination of turbulent mixing (i.e., the vertical cold finger effect) and ice chemistry driven by stellar UV photons. On the other hand, gaseous N2, the main nitrogen reservoir in the warm molecular layer, is less processed by ice chemistry, and exists as it is. Then the nitrogen depletion occurs solely by the vertical cold finger effect of N2. As the binding energy of N2 is lower than that of CO and CO2, the degree of nitrogen depletion is smaller than that of carbon and oxygen depletion, leading to higher elemental abundance of nitrogen than that of carbon and oxygen. This evolution occurs within 1 Myr and proceeds further, when the $α$ parameter for the diffusion coefficient is ~0.001. Consequently, the N2H+/CO column density ratio increases with time. How the vertical transport affects the midplane ice composition is briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源