论文标题

地震阶段与图神经网络的关联

Earthquake Phase Association with Graph Neural Networks

论文作者

McBrearty, Ian W., Beroza, Gregory C.

论文摘要

地震阶段关联将地震到达时间测量连接到其因果关系。有效的关联必须确定离散事件的数量,它们的位置和起源时间,并且必须将实际到达与测量工件区分开。深度学习采摘者的出现,从紧密重叠的小地震中提供了很高的选择,它激发了重新审视相关问题并使用深度学习方法来解决它。我们已经开发了一个图形神经网络关联器,该神经网络协会同时预测了源时空定位和离散的源源 - 到达关联可能性。该方法适用于任意几何形状,数百个电台的时变地震网络,并且具有可变噪声和质量的高源和输入选拔速率。我们的图形地震神经解释引擎(Genie)使用一个图来表示站点,另一个图表示空间源区域。 Genie从此组合表示的数据中学习了关系,使其能够确定可靠的来源和源源联想。我们使用Phasenet深度学习阶段选择器生成的输入来培训合成数据,并测试来自北加州(NC)地震网络的真实数据的方法。我们成功地重新检测了USGS在2000年$ \ unicode {x2013} $ 2022之间的500天报告中报告的所有事件M> 1的96%。在2017年的100天连续处理间隔内,$ \ unicode {x2013} $ 2018,我们检测到〜4.2x USGS报告的事件数量。我们的新事件的估计值低于USGS目录的完整性幅度,并且位于该地区的活动故障和采石场附近。我们的结果表明,精灵可以在复杂的地震监测条件下有效解决关联问题。

Seismic phase association connects earthquake arrival time measurements to their causative sources. Effective association must determine the number of discrete events, their location and origin times, and it must differentiate real arrivals from measurement artifacts. The advent of deep learning pickers, which provide high rates of picks from closely overlapping small magnitude earthquakes, motivates revisiting the phase association problem and approaching it using the methods of deep learning. We have developed a Graph Neural Network associator that simultaneously predicts both source space-time localization, and discrete source-arrival association likelihoods. The method is applicable to arbitrary geometry, time-varying seismic networks of hundreds of stations, and is robust to high rates of sources and input picks with variable noise and quality. Our Graph Earthquake Neural Interpretation Engine (GENIE) uses one graph to represent the station set and another to represent the spatial source region. GENIE learns relationships from data in this combined representation that enable it to determine robust source and source-arrival associations. We train on synthetic data, and test our method on real data from the Northern California (NC) seismic network using input generated by the PhaseNet deep learning phase picker. We successfully re-detect ~96% of all events M>1 reported by the USGS during 500 random days between 2000$\unicode{x2013}$2022. Over a 100-day continuous interval of processing in 2017$\unicode{x2013}$2018, we detect ~4.2x the number of events reported by the USGS. Our new events have small magnitude estimates below the magnitude of completeness of the USGS catalog, and are located close to the active faults and quarries in the region. Our results demonstrate that GENIE can effectively solve the association problem under complex seismic monitoring conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源