论文标题

CommunityLM:从语言模型中探索党派世界观

CommunityLM: Probing Partisan Worldviews from Language Models

论文作者

Jiang, Hang, Beeferman, Doug, Roy, Brandon, Roy, Deb

论文摘要

随着政治态度在美国的意识形态上存在分歧,政治言论在lingused上的分歧。美国政党之间不断扩大的两极分化是由于它们之间的相互理解的侵蚀加剧了。我们的目的是通过一个框架来使这些社区更加可理解,该框架使用社区语言模型社区LM对社区特定的回答对同一调查问题的回答。在我们的框架中,我们在Twitter上确定了每个社区的党派成员,并在他们撰写的推文上进行了微调LMS。然后,我们使用基于迅速的相应LM的及时探测两组的世界观,并提示对美国国家选举研究(ANES)2020年探索性测试调查提出了对公众人物和群体的意见。我们将LMS与ANES调查结果产生的响应进行比较,并找到一个大大超过几种基线方法的对齐水平。我们的工作旨在表明,我们可以使用社区LMS来查询任何一群人的世界观,以提供足够大的社交媒体讨论或媒体饮食。

As political attitudes have diverged ideologically in the United States, political speech has diverged lingusitically. The ever-widening polarization between the US political parties is accelerated by an erosion of mutual understanding between them. We aim to make these communities more comprehensible to each other with a framework that probes community-specific responses to the same survey questions using community language models CommunityLM. In our framework we identify committed partisan members for each community on Twitter and fine-tune LMs on the tweets authored by them. We then assess the worldviews of the two groups using prompt-based probing of their corresponding LMs, with prompts that elicit opinions about public figures and groups surveyed by the American National Election Studies (ANES) 2020 Exploratory Testing Survey. We compare the responses generated by the LMs to the ANES survey results, and find a level of alignment that greatly exceeds several baseline methods. Our work aims to show that we can use community LMs to query the worldview of any group of people given a sufficiently large sample of their social media discussions or media diet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源