论文标题
MIPI 2022 RGB+TOF深度完成挑战:数据集并报告
MIPI 2022 Challenge on RGB+ToF Depth Completion: Dataset and Report
论文作者
论文摘要
随着对移动平台上对计算摄影和成像的需求不断增长,在相机系统中开发和集成了高级图像传感器与相机系统中的新算法非常普遍。但是,缺乏用于研究的高质量数据以及从行业和学术界进行深入交流的难得的机会限制了移动智能摄影和成像的发展(MIPI)。为了弥合差距,我们介绍了第一个MIPI挑战,包括五个曲目,这些曲目专注于新型图像传感器和成像算法。在本文中,引入了RGB+TOF深度完成,这是五个曲目之一,其中一条用于RGB传感器和TOF传感器(带有点照明)的融合。为参与者提供了一个名为TetrasRGBD的新数据集,其中包含18k对高质量合成RGB+深度训练数据和2.3k对来自混合源的测试数据的成对。所有数据均在室内场景中收集。我们要求所有方法的运行时间都应在桌面GPU上实时。最终结果是使用客观指标和平均意见评分(MOS)主观评估的。本文提供了本挑战中所有模型的详细描述。有关此挑战的更多详细信息以及数据集的链接,请访问https://github.com/mipi-challenge/mipi2022。
Developing and integrating advanced image sensors with novel algorithms in camera systems is prevalent with the increasing demand for computational photography and imaging on mobile platforms. However, the lack of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). To bridge the gap, we introduce the first MIPI challenge including five tracks focusing on novel image sensors and imaging algorithms. In this paper, RGB+ToF Depth Completion, one of the five tracks, working on the fusion of RGB sensor and ToF sensor (with spot illumination) is introduced. The participants were provided with a new dataset called TetrasRGBD, which contains 18k pairs of high-quality synthetic RGB+Depth training data and 2.3k pairs of testing data from mixed sources. All the data are collected in an indoor scenario. We require that the running time of all methods should be real-time on desktop GPUs. The final results are evaluated using objective metrics and Mean Opinion Score (MOS) subjectively. A detailed description of all models developed in this challenge is provided in this paper. More details of this challenge and the link to the dataset can be found at https://github.com/mipi-challenge/MIPI2022.