论文标题
$ f $ mmode动力潮汐对偏心双白色矮人的重力波的periastron进动效应
Periastron precession effect of $f$-mode dynamical tides on gravitational waves from eccentric double white dwarfs
论文作者
论文摘要
动态潮汐可以在近亲双白矮人二进制的轨道运动中起重要作用。随着空间引力波检测器的发射,激光干涉仪空间天线(LISA)就在拐角处,预计从此类系统中检测引力波信号。在本文中,我们讨论了动力潮对偏心轨道的影响,重点是对轨道进动的影响。我们表明,在具有较高偏心的轨道中,当轨道频率的谐波与恒星正常模式的固有频率相匹配时,共振可能会引起较大的进攻。与圆形轨道的情况相反,每种模式都会遇到具有不同谐波的多个共振,这些共振区域可以覆盖与距离紧密分离的轨道的频率空间的约10%。在这种情况下,潮汐进动效应与其他贡献不同,如果信噪比足够高,则可以用丽莎确定。然而,在高度偏心的分离区域内,动力学潮汐会导致混沌运动,而重力波信号变得不可预测。即使不是在共振时,动态潮汐也可以贡献多达20%的动力,以较低的偏心率接近Roche-Lobe填充分离,而Lisa可以解决这些低偏心度 - 小孔轨道分离区域的这些非谐振动态潮汐效应。对于较低的质量系统,动态潮汐效应可能会随着偏心率的不确定性而退化,仅靠进攻率就无法得到衡量。对于较高的质量系统,辐射反应效应变得足够显着,可以限制偏心率,从而可以测量动态潮汐。
The dynamical tide can play an important role in the orbital motion of close eccentric double white dwarf binaries. As the launching of the space-based gravitational-wave detector, the Laser Interferometer Space Antenna (LISA), is just around the corner, detection of gravitational wave signals from such systems is anticipated. In this paper, we discuss the influence of the dynamical tide on eccentric orbits, focusing on the effect on orbital precession. We show that in orbits with a high eccentricity, resonance can cause a large precession when a harmonic of the orbital frequency matches the natural frequencies of the normal modes of the star. In contrast to the case with circular orbits, each mode can encounter multiple resonances with different harmonics and these resonant regions can cover about 10% of the frequency space for orbits with close separations. In this case, the tidal precession effect is distinct from the other contributions and can be identified with LISA if the signal-to-noise ratio is high enough. However, within the highly eccentric-small separation region, the dynamical tide causes chaotic motion and the gravitational wave signal becomes unpredictable. Even not at resonance, the dynamical tide can contribute up to 20% of the precession for orbits close to Roche-lobe filling separation with low eccentricities and LISA can resolve these off-resonant dynamical tide effects within the low eccentricity-small orbital separation region of the parameter space. For lower mass systems, the dynamical tide effect can degenerate with the uncertainties of the eccentricity, making it unmeasurable from the precession rate alone. For higher mass systems, the radiation reaction effect becomes significant enough to constrain the eccentricity, allowing the measurement of the dynamical tide.