论文标题
食品可持续性的时间序列预测
Time Series Prediction for Food sustainability
论文作者
论文摘要
随着人口的指数增长,保存自然资源至关重要,而不必损害足够的食物来养活所有人。这样做可以改善目前和后代的人的生计,健康和生态系统。可持续发展是联合国的范式,植根于食品,农作物,牲畜,森林,人口,甚至气体的排放。通过了解过去不同国家自然资源的总体使用,可以预测每个国家的需求。提出的解决方案包括使用统计回归模型实施机器学习系统,该模型可以预测将来在特定时期内每个国家 /地区短缺的顶级K产品。根据绝对误差和根平方误差的预测性能由于其低误差而显示出令人鼓舞的结果。该解决方案可以帮助组织和制造商了解满足全球需求所需的生产力和可持续性。
With exponential growth in the human population, it is vital to conserve natural resources without compromising on producing enough food to feed everyone. Doing so can improve people's livelihoods, health, and ecosystems for the present and future generations. Sustainable development, a paradigm of the United Nations, is rooted in food, crop, livestock, forest, population, and even the emission of gases. By understanding the overall usage of natural resources in different countries in the past, it is possible to forecast the demand in each country. The proposed solution consists of implementing a machine learning system using a statistical regression model that can predict the top k products that would endure a shortage in each country in a specific period in the future. The prediction performance in terms of absolute error and root mean square error show promising results due to its low errors. This solution could help organizations and manufacturers understand the productivity and sustainability needed to satisfy the global demand.