论文标题

量子算法的自动确定性错误抑制工作流程的实验基准测试

Experimental benchmarking of an automated deterministic error suppression workflow for quantum algorithms

论文作者

Mundada, Pranav S., Barbosa, Aaron, Maity, Smarak, Wang, Yulun, Stace, T. M., Merkh, Thomas, Nielson, Felicity, Carvalho, Andre R. R., Hush, Michael, Biercuk, Michael J., Baum, Yuval

论文摘要

关于量子计算机承诺的兴奋是由于硬件仍然非常脆弱且容易出错的现实,在新型应用的开发中形成了瓶颈。在本手稿中,我们描述并在实验中测试了一个完全自主的工作流程,该工作流旨在确定性地抑制量子算法中的错误,从栅极级别到电路执行和测量。我们介绍了此工作流的关键要素,作为一个称为Fire Opal的软件包交付的关键要素,并调查了基本的物理概念:错误感知的汇编,自动化的系统范围内的栅极优化,自动化的动力学解耦嵌入,以进行电路级别的误差取消和校准效率高效的测量测量 - 纠纷。然后,我们介绍了在IBM硬件上执行的全面性能基准套件,与开放文献中提供的最佳替代专家配置技术相比,它的提高速度> 1000倍。基准测试包括使用多达16个Qubit系统执行的实验:Bernstein Vazirani,Quantum Fourier Transform,Grover's Search,QAOA,VQE,VQE,综合征提取综合征,在五克量子误差校正代码和量子体积上。实验揭示了非马克维亚错误对基线算法性能的有力贡献。在所有情况下,确定性误差抑制工作流都提供最高的性能,并且方法不需要任何其他采样或随机开销,同时保持与所有其他概率抑制技术的兼容性。

Excitement about the promise of quantum computers is tempered by the reality that the hardware remains exceptionally fragile and error-prone, forming a bottleneck in the development of novel applications. In this manuscript, we describe and experimentally test a fully autonomous workflow designed to deterministically suppress errors in quantum algorithms from the gate level through to circuit execution and measurement. We introduce the key elements of this workflow, delivered as a software package called Fire Opal, and survey the underlying physical concepts: error-aware compilation, automated system-wide gate optimization, automated dynamical decoupling embedding for circuit-level error cancellation, and calibration-efficient measurement-error mitigation. We then present a comprehensive suite of performance benchmarks executed on IBM hardware, demonstrating up to > 1000X improvement over the best alternative expert-configured techniques available in the open literature. Benchmarking includes experiments using up to 16 qubit systems executing: Bernstein Vazirani, Quantum Fourier Transform, Grover's Search, QAOA, VQE, Syndrome extraction on a five-qubit Quantum Error Correction code, and Quantum Volume. Experiments reveal a strong contribution of Non-Markovian errors to baseline algorithmic performance; in all cases the deterministic error-suppression workflow delivers the highest performance and approaches incoherent error bounds without the need for any additional sampling or randomization overhead, while maintaining compatibility with all additional probabilistic error suppression techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源