论文标题

可变度量复合近端交替的线性最小化,用于非convex非平滑优化

Variable Metric Composite Proximal Alternating Linearized Minimization for Nonconvex Nonsmooth Optimization

论文作者

Yashtini, Maryam

论文摘要

在本文中,我们提出了一种近端算法,用于最大程度地减少由三个术语组成的两个块变量的客观函数:1)平滑函数,2)非平滑函数,它是严格增加,凹面,可区分的函数和convex nonsmooth函数的组成,而convex nonsmooth函数和3)平滑函数可以使两个块变量构成。我们提出了一个可变的度量复合近端交替线性化最小化(CPALM)来解决此类问题。在强大的kurdyka-lojasiewicz属性的基础上,我们得出了融合分析,并确定CPALM在全球范围内生成的每个有界序列都会收敛到临界点。我们在平行磁共振图像重建问题上演示了CPALM方法。获得的数值结果显示了所提出方法的生存能力和有效性。

In this paper we propose a proximal algorithm for minimizing an objective function of two block variables consisting of three terms: 1) a smooth function, 2) a nonsmooth function which is a composition between a strictly increasing, concave, differentiable function and a convex nonsmooth function, and 3) a smooth function which couples the two block variables. We propose a variable metric composite proximal alternating linearized minimization (CPALM) to solve this class of problems. Building on the powerful Kurdyka-Łojasiewicz property, we derive the convergence analysis and establish that each bounded sequence generated by CPALM globally converges to a critical point. We demonstrate the CPALM method on parallel magnetic resonance image reconstruction problems. The obtained numerical results shows the viability and effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源