论文标题

使用贝叶斯优化伪造网络物理系统

Falsification of Cyber-Physical Systems using Bayesian Optimization

论文作者

Ramezani, Zahra, Šehić, Kenan, Nardi, Luigi, Åkesson, Knut

论文摘要

网络物理系统(CPSS)通常是复杂且关键性的,这既具有挑战性又至关重要,以确保满足系统的规格。基于仿真的伪造是一种实用的测试技术,可以提高对CPS正确性的信心,因为它只需要模拟系统。减少伪造所需的计算密集型模拟数量是一个关键问题。在这项研究中,我们研究了贝叶斯优化(BO),这是一种样本效率的方法,该方法学习了替代模型,以捕获输入信号参数化和规范评估之间的关系。我们为改善伪造的基本BO提出了两个增强功能:(1)利用当地的替代模型,以及(2)利用用户的先验知识。此外,我们通过提出和评估各种替代方案来解决伪造的采集函数的制定。我们的基准评估表明,在BO中使用局部替代模型来伪造具有挑战性的基准示例时,表现出重大改进。当模拟预算受到限制时,发现合并先验知识特别有益。对于某些基准问题,获取功能的选择明显影响成功伪造所需的模拟数量。

Cyber-physical systems (CPSs) are often complex and safety-critical, making it both challenging and crucial to ensure that the system's specifications are met. Simulation-based falsification is a practical testing technique for increasing confidence in a CPS's correctness, as it only requires that the system be simulated. Reducing the number of computationally intensive simulations needed for falsification is a key concern. In this study, we investigate Bayesian optimization (BO), a sample-efficient approach that learns a surrogate model to capture the relationship between input signal parameterization and specification evaluation. We propose two enhancements to the basic BO for improving falsification: (1) leveraging local surrogate models, and (2) utilizing the user's prior knowledge. Additionally, we address the formulation of acquisition functions for falsification by proposing and evaluating various alternatives. Our benchmark evaluation demonstrates significant improvements when using local surrogate models in BO for falsifying challenging benchmark examples. Incorporating prior knowledge is found to be especially beneficial when the simulation budget is constrained. For some benchmark problems, the choice of acquisition function noticeably impacts the number of simulations required for successful falsification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源